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With a heralded single photon source (HSPS), a measurement-device-independent quantum key distribution (MDI-

QKD) protocol is proposed, combined with a three-intensity decoy-state method. HSPS has the two-mode characteristic, 

one mode is used as signal mode, and the other is used as heralded mode to reduce the influence of the dark count. The 

lower bound of the yield and the upper bound of the error rate are deduced and the performance of the MDI-QKD pro-

tocol with an HSPS is analyzed. The simulation results show that the MDI-QKD protocol with an HSPS can achieve a 

key generation rate and a secure transmission distance which are close to the theoretical limits of the protocol with a 

single photon source (SPS). Moreover, the key generation rate will improve with the raise of the senders’ detection effi-

ciency. The key generation rate of the MDI-QKD protocol with an HSPS is a little less than that of the MDI-QKD pro-

tocol with a weak coherent source (WCS) in the close range, but will exceed the latter in the far range. Furthermore, a 

farther transmission distance is obtained due to the two-mode characteristic of HSPS. 
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Quantum key distribution (QKD)[1] has drawn consider-

able attention as a method of achieving a shared uncondi-

tional secure private key. The theoretical and experimen-

tal studies have obtained remarkable results[2-6]. However, 

the setups used in the practical system are imperfect, 

which will threaten the security of the practical QKD. 

Photon number splitting (PNS)[7] attack made people re-

alize the loophole left by the imperfect optical source. 

Fortunately, the decoy-state method[8] was proposed to be 

a very useful candidate for substantially resisting the PNS 

attack and enhancing the performance of QKD. Similarly, 

due to the imperfection of measurement devices, a variety 

of loopholes were used by Eve to attack QKD, such as a 

time-shift attack[9], detector-blinding attack[10], faked 

states attack[11], and so on. In 2012, Lo et al presented a 

protocol of measurement-device-independent quantum 

key distribution (MDI-QKD)[12] to exclude all these at-

tacks on detectors. Recently, it has become the most effi-

cient and prominent method to bring MDI-QKD and de-

coy states together for a better security and performance. 

Refs.[13—17] analyzed the transmission distance, statis-

tical fluctuation, parameter optimization, etc. Liu[18] and 

Tang[19] implemented the phase encoding and polariza-

tion encoding MDI-QKD. Pan Jian-wei and his team[20] 

implemented MDI-QKD with 200 km transmission dis-

tance for the first time.  

However, the above studies are all based on weak co-

herent sources (WCSs). This paper will consider another 

optical source, namely the heralded single photon source 

(HSPS)[21-24], which is frequently used in the normal 

QKD experiments. We will propose a new MDI-QKD 

method with three intensity states (signal state, vacuum 

state and decoy state), and analyze the performance in 

detail. 

The state of the photons generated in two modes by 

HSPS can be written as 

0

n

n

P n nψ
∞

=

=∑ ,                                                   (1) 

where |n〉 represents an n-photon state, Pn=xn/(1+x)n+1is 

the probability to get an n-photon pair and x is the inten-

sity of one mode. The photon number of two modes is 

always the same. 

The system model for the HSPS MDI-QKD with po-

larization encoding method and BB84 protocol is shown 

as Fig.1. Alice and Bob both generate two-mode signals. 

One mode is used as signal mode to be encoded in x or y 

basis by a polarization modulator (Pol-M). After intensity 

modulation, the signal mode is sent to the third party who 

will perform a Bell state measurement (BSM) and an-

nounce his results. Alice and Bob can distill a secret key 

by performing error correction and private amplification. 

The other mode is detected by the detector a0 or b0 to 

forecast the photon number and arrival time of the rele-

vant signal mode. The method will reduce the influence 

of dark count on the QKD in long distance.   
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Fig.1 The system model for HSPS MDI-QKD 

 

We design the MDI-QKD protocol as follows. 

(1) Alice and Bob both generate three kinds of pulses 

with different intensities randomly: vacuum state, decoy 

state and signal state, denoted as u0, u1, u2 (Alice) and v0, 

v1, v2 (Bob), respectively, which satisfy u2>u1>u0=0, 

v2>v1>v0=0. 

(2) We suppose that Alice and Bob use threshold detec-

tors which can only tell whether there is photon or not. The 

detecting result is defined as j, where j=0 indicates that the 

detector is not untriggered and j=1 indicates that the detec-

tor is triggered. Given an incoming i-photon state, the 

probability of the detecting result is defined as ηj given by 

(1 )

d d d d
(1 )(1 ) 1 (1 )(1 )

j j
i i

j
P Pη η η−

= − − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ,         (2) 

where Pd and ηd are the dark count rate and detection 

efficiency of the detector, respectively. We suppose the 

parameters of all detectors are the same. 

Then we define Quv and Euv to be the overall rate and the 

quantum bit error rate (QBER), respectively, when the in-

tensity of the pulse from Alice is u and that from Bob is v. 
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where ω=x or z. Alice and Bob estimate the parameters of 

channel in the x basis and distill the secure key in the z 

basis. 
nm

Y
ω  is the probability to obtain a successful BSM 

when Alice sends an n-photon state and Bob sends an m-

photon state. 
nm
e

ω  is the corresponding error probability. jA 

and jB correspond to Alice’s and Bob’s detecting results. 

Just as Eqs.(3) and (4), Q
uv

 and E
uv

 can be divided into 

four events respectively according to the different values 

of jA and jB: ,1,1

uv
Q

ω  and ,1,1

uv
E

ω  are defined as triggered events, 

while ,0,0

uv
Q

ω  and ,0,0

uv
E

ω  are defined as untriggered events. 

(3) When both detectors a0 and b0 are triggered, the 

third party performs BSM, that is, Alice and Bob only 

use triggered events to generate key to reduce the influ-

ence of dark count on QKD in long distance. The final 

key generation rate is given by 
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where f(x) is the bidirectional error correction efficiency. 

H2(x) is the binary Shannon information entropy function 

given by H2(x)=−xlog2(x)−(1−x)log2(1−x). 
2 2

,1,1z

u v
Q and 

2 2

,1,1z

u v
E  

can be observed in the experiment. In order to calculate 

the final key generation rate, we need to estimate the 

lower bound of 
11

z

Y  and the upper bound of 
11

x

e .  

We notice that Eqs.(3) and (4) are independent of the 

basis choice, so we neglect the superscript ω in the fol-

lowing derivation. From Eq.(3), we can get  
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We can estimate the lower bound of Y11 with 
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where we use the fact that for any n, m ≥ 2, the following 

inequalities always hold, which are given by 
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where α=min{a, b, c}. 
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According to Eq.(8), the lower bound of Y11 is given by  
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Subsequently, we estimate the upper bound of e11. Ac-

cording to Eq.(4), we have 
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Thus, the upper bound of e11 is given by 
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Now, we can calculate the final key rate with Eqs.(5), 

(11) and (15). We use the parameters mainly from 

Ref.[14]. Pd =3×10-6, ed =1.5%, ηd =0.3, f =1.16, and the 

channel loss is α=0.21 dB/km. In simulation, for the de-

coy states, u1=v1=0.01. The signal states u2 and v2 are 

optimized at each distance value.  

Fig.2 shows that the key generation and secure trans-

mission distance of HSPS MDI-QKD are very close to 

the limits of single photon source (SPS) MDI-QKD, and 

the HSPS MDI-QKD can obtain an advantage about 

20 km in secure transmission distance compared with 

WCS MDI-QKD. There is a crossover at 239 km. The 

key generation rate of the HSPS MDI-QKD is a little less 

than that of WCS MDI-QKD protocol in the close range, 

but will exceed the latter in the far range. The reason for 

the gap in front distance is the higher ratio of the multi-

photon states in HSPS compared with WCS. But over the 

crossover, the heralded-photon-number method can re-

duce the influence of dark count and extend the distance. 

We calculate the final key rates of HSPS MDI-QKD with 

different detection efficiencies on Alice’s and Bob’s sides 

respectively (ηd=0.9, 0.6, 0.3, 0.1). Fig.3 shows that the per-

formance enhances obviously when ηd changes from 0.1 to 

0.9. Therefore, the detection efficiency is higher and more 
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non-vacuum pulses can be detected. In this way, the data in 

triggered events will increase and the performance of MDI-

QKD will be improved finally. Here, we suppose the third 

party’s detection efficiency is constant to observe the influ-

ence of Alice’s and Bob’s detection efficiencies on the per-

formance of HSPS MDI-QKD. 

 

 

Fig.2 The curves of the key generation rate as a func-

tion of the secure transmission distance with different 

sources  

 

 

Fig.3 A performance comparison of HSPS MDI-QKD 

with different detection efficiencies on Alice’s and 

Bob’s sides 

 
In summary, an MDI-QKD protocol is proposed com-

bining the three-intensity decoy-state method with an 

HSPS. The lower bound of the yield and the upper bound 

of the error rate are deduced and the performance is ana-

lyzed through numerical simulation. Firstly, the key gen-

eration rate and secure transmission distance of HSPS 

MDI-QKD are very close to the limits of the SPS MDI-

QKD. Secondly, there is a crossover on the performance 

curves of HSPS MDI-QKD and WCS MDI-QKD. The 

key generation rate of the HSPS MDI-QKD is a little less 

than that of WCS MDI-QKD in the close range, but will 

exceed the latter in the far range. Thirdly, the HSPS 

MDI-QKD can obtain longer transmission distance than 

the WCS MDI-QKD. Finally, the performance enhances 

obviously when the detection efficiencies of senders’ 

detectors rise. Therefore, the HSPS MDI-QKD protocol 

is effective and feasible. 
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